Clinical Care/Therapeutics

A multicampus infrastructure to advance telehealth implementation for low-income Californians in response to COVID-19
Researcher/s: Hector Rodriguez, Denise Payan, Lorena Garcia | UC Berkeley, UC Merced, UC Davis
Examining the transition towards telehealth COVID-19 treatment for low-income Californians with pre-existing chronic conditions.

Augmented Reality video-assisted clinical care for remote management of COVID-19
Researcher/s: Narges Norouzi, Ian Julie | UC Santa Cruz, UC Davis
Demonstrating real-time analysis of video telehealth treatment intended to assist a clinical practitioner in the management of COVID-19 patients.

Contact Tracing

Discovery of symptom phenotypes and trajectories for COVID-19 adaptive interventions
Researcher/s: Katherine Kim, Xin Liu, Jill Joseph, Joanne Natale | UC Davis Health
Using an innovative platform to collect longitudinal data and testing results and applying cutting-edge machine-learning methods to predict COVID-19 infection.

A data scientific approach to coronavirus surveillance: Application to re-opening UC campuses
Researcher/s: Scott Moura, Raja Sengupta | UC Berkeley
Leveraging data science methods to model, survey, and potentially mitigate outbreaks within large institutions, such as university campuses, developing a toolkit for societal leaders and organizations to re-open operations.

Data Analytics/Modeling

Estimating the local spread of COVID-19 around long-term care facilities in California using social interaction networks with spatial information
Researcher/s: Martin Cadeiras, Miriam Nuño, Diego Pinheiro | UC Davis Health
Using novel epidemiological modeling of COVID-19 to generate accurate predictive analytics on the local spread of COVID-19 at long-term care facilities (such as nursing homes) in California.

Social distancing and sheltering in place: Using a nationwide smartphone panel with location data to understand population heterogeneity and inform intervention methods
Researcher/s: Daniel Chatman, Joan Walker, Daniel Rodriguez | UC Berkeley
Taking pre- and post-COVID movement data to measure household activity changes to correlate with baseline demographics - including household income, household size, and race/ethnicity.
Identifying and quantifying COVID-19 misinformation
Researcher/s: Hany Farid, Alexa Koenig | UC Berkeley
Using machine learning to collect data on COVID-19 misinformation on social media sites in order to mitigate harm caused by deception and conspiracy theories.

Privacy guarantees for the use of personal location data in COVID models
Researcher/s: Joshua Blumenstock | UC Berkeley
Developing privacy-preserving techniques for the use of personal location data in epidemiological methods without compromising individual privacy.

Strain-level surveillance of SARS-CoV-2 and RNA viromes in municipal wastewater
Researcher/s: Kara Nelson, Jillian Banfield | UC Berkeley
Wastewater-based epidemiology to track the spread of COVID-19 via sewage surveillance, monitoring community infection levels as shelter-in-place orders are lifted and detecting future reintroductions of the virus.

Improving COVID-19 severity forecasting and uncertainty quantification
Researcher/s: Bin Yu | UC Berkeley
Using novel interpretable models to forecast COVID-19 cases, hospitalizations, and deaths for each county - accurate up to a month ahead.

Open-source 3D browser with and without Virtual Reality for gamified crowdsourcing of COVID-19 data analysis
Researcher/s: Mircea Teodorescu, Sri Kurniawan | UC Santa Cruz
Web-based platform that enables crowdsourced analysis of COVID-19 data through browser-based 3D rendering with and without virtual reality.

PPE/Equipment

AmbuBox: Fast-deployable low-cost ventilator for COVID-19 emergent care
Researcher/s: Tingrui Pan, Andrew Li | UC Davis
Designing a low-cost, clinically viable ventilator - “AmbuBox” will be able to be rapidly deployed for pandemics inflicting respiratory distress.

At-home COVID-19 detection on face mask
Researcher/s: Liwei Lin, Shuvo Roy | UC Berkeley, UCSF
Analyzing exhaled breath condensate on face masks to detect COVID-19 infection without the use of conventional throat swabs.

Developing a 3D-printed protective cage for decontamination of N95 masks
Researcher/s: Phillip Messersmith | UC Berkeley
To address the PPE shortage, researchers will study the eco-friendly use of liquid CO2 to clean and sterilize clinical masks without diminishing mask performance.

Developing a mobile, low-cost, scalable, variable output ozone generator for different sanitization applications
Researcher/s: Reza Ehsani | UC Merced
Designing a new, low-cost, portable ozone production system to efficiently sanitize medical equipment and spaces to mitigate spread of COVID-19.

RespiraWorks open-source ventilator
Researcher/s: Julia Schaletzky | UC Berkeley

Creating an open-source ventilator design to address market shortfalls while providing the features of ventilators capable of monitored care for up to two weeks.

Low-cost, flexible oxygen saturation and temperature sensors for COVID-19 patient home monitoring
Researcher/s: Rikky Muller, Ana Arias | UC Berkeley

Developing disposable body-worn patches to measure blood oxygen and heart rate to address hypoxia concerns.

Vine robot for automated nasopharyngeal swabbing
Researcher/s: Gabriel Elkaim, Lin Zhang | UC Santa Cruz, UC Davis Health

“Vine” robot that extends a soft, vine-like swab tip to test patients with more comfort for patients and less risk for clinicians.

Testing

The UCSC SARS-CoV-2 genome browser
Researcher/s: Maximilian Haeussler, Jim Kent | UC Santa Cruz

Accelerating Covid-19 research by integrating all genetic information from existing resources into the UCSC Genome Browser.

Applying transformative technology to create a diagnostic testing facility from a research lab
Researcher/s: David Haussler, Olena Vaske | UC Santa Cruz

Transformative technology to open a Clinical Laboratory Improvement Amendments (CLIA) diagnostic testing facility to benefit symptomatic community members and essential workers.

COVID-19 detection using nanotechnology-based devices
Researcher/s: Waqas Khalid | UC Berkeley

Designing a portable, point-of-care rapid testing device the size of a credit card to aid in continuous testing.

Delivering safer air in healthcare facilities treating COVID-19 patients
Researcher/s: Hayden Taylor | UC Berkeley

Rapidly manufacturable, easily deployable, and affordable air treatment system to reduce the volume of virus particles inhaled by healthcare personnel.

Ionizing air to trap COVID-19 virus to prevent airborne transmission
Researcher/s: Saif Islam | UC Davis

One-dimensional semiconductor nanostructures to address the biggest challenge of ionizing devices – dangerously high voltage of operation that emits harmful ozone gas as a byproduct.

At home personalized monitoring of exhaled breath inflammatory biomarkers for known or suspected COVID-19 patients
Researcher/s: Cristina Davis, Nicholas Kenyon, Michael Schivo | UC Davis
Self-administered tests so that subjects who are sent home from hospitals to self-quarantine can collect their exhaled breath samples.

Development of sensor platforms for rapid COVID-19 antibody detection
Researcher/s: Wei-Chun Chin, Changqing Li, Jennifer Lu | UC Merced

Building low-cost COVID-19 antibody sensor platforms based on graphene and carbon nanotubes with very fast response time (within seconds).

Droplet transport controlling airborne disease transmission
Researcher/s: Simo Makiharju | UC Berkeley

To understand and control the transmission within and between rooms, including the effects of building ventilation in distributing aerosols throughout buildings.

Online visualization and annotation of SARS-CoV-2 protein domains
Researcher/s: Ian Holmes | UC Berkeley

Developing a web application prototype to integrate protein phylogenies, alignments, and structures in an interactive browsing experience that allows scientific literature to be annotated, bookmarked, and shared.

Integrated quantitative microbial risk assessment and geospatial analysis of SARS-CoV-2 in wastewater for vulnerable populations
Researcher/s: Colleen Naughton, Maureen Kinyua | UC Merced, UC Davis

Information technology to quantify the associated risk of SARS-CoV-2 infection for wastewater treatment operators and neighboring communities.

Detection of active SARS-CoV-2 infections in crude biofluids
Researcher/s: Markita Landry | UC Berkeley

Rapid, reversible, and portable device to detect active CoV-2 infected individuals, with a supply chain orthogonal to qPCR-detection of infected individuals.

An ultra-sensitive method to determine viral load of COVID-19 patients for patient stratification and care
Researcher/s: Lydia Lee Sohn | UC Berkeley

Quantifying SARS-CoV-2 viral load in COVID-19 patient saliva, tagging viral particles with DNA oligonucleotides — tDEV preliminary data shows unprecedented sensitivity for SARS-CoV-2 quantitation.

Validating the use of Propidium Monoazide (PMA) qRT-PCR to detect viability of SARS-CoV-2 without the need for BSL3 tissue culture
Researcher/s: Jonathan Eisen | UC Davis

Propidium Monoazide-based assay to detect viable SARS-CoV-2 virus in environmental samples, testing how long the SARS-CoV-2 virus is viable in the environment.